Mini-Controller ZEN

Features

Expandable Mini-Controller

- 4 different CPU units, up to 3 expansion units
- 5 different expansion units
- Real time clock and calendar function
- Backlit LCD
- Screen menus displayed in 6 languages
- Inputs: 24 VDC or 230 VAC Outputs: Relays, 8 A, 250 VAC, Transistor 24 VDC, 500 mA
- Programming software optional

Order information

Basic data

- Design conforms to
- Contact spacing $4 \times 17.5 \mathrm{~mm}$
- Operating temperature:
$25^{\circ} \mathrm{C} . .50^{\circ} \mathrm{C}$
- 2 analog inputs with VDC CPU unit
- Ladder programming

Basic Unit	Type	Display/ Keypad	Clock/ Calendar	Output Type	Supply Inputs	Product Label
6 inputs and 4 outputs	DE LUXE	yes	yes	Relay	100.. 240 VAC	ZEN-10C1AR-A
	STINO	no	no	Relay		ZEN-10C2AR-A
	DE LUXE	yes	yes	Relay	24 VDC, 2 inputs for analog use	ZEN-10C1DR-D
	STINO	no	no	Relay		ZEN-10C2DR-D
	DE LUXE	yes	yes	Transistor	24 VDC, 2 inputs for analog use	ZEN-10C1DT-D
	STINO	no	no	Transistor		ZEN-10C2DT-D

Expansion Units	Inputs	Outputs	Product Label
4 inputs and 4 outputs $4 \times 100 . .240$ VAC	$4 \times$ relays, $8 \mathrm{~A}, 250 \mathrm{VAC}$	ZEN-8EAR	
4 inputs and 4 outputs $4 \times 24 \mathrm{VDC}$	$4 \times$ relays, $8 \mathrm{~A}, 250 \mathrm{VAC}$	ZEN-8EDR	
4 inputs and 4 outputs $4 \times 24 \mathrm{VDC}$	Transistor $500 \mathrm{~mA}, 24 \mathrm{VDC}$	ZEN-8EDT	
4 inputs $4 \times 100 . .240 \mathrm{VAC}$	-	ZEN-8EA	
4 inputs $4 \times 24 \mathrm{VDC}$	-	ZEN-8ED	
4 inputs	-	$4 \times$ relays, $8 \mathrm{~A}, 250 \mathrm{VAC}$	ZEN-8ER

Accessories and Options	EEPROM (for data security and copying)	ZEN-ME01
	Battery (keeps time, date and bit values for 10 years at $25^{\circ} \mathrm{C}$)	ZEN-BAT01
	for the programming software, RS-232C cable, 9-way ' D ' connector for PC	ZEN-CIF01
	Support Software for WINDOWS (95/98/2000), ME and NT 4.0	ZEN-SOFT01

System Setting

Specifications

Units with AC Inputs

Expansion Unit

		Basic Unit	Expansion Unit
Rated voltage		100.. 240 VAC	100..240 VAC
Input impedance		$680 \mathrm{k} \Omega$	$83 \mathrm{k} \Omega$
Max. switching current		$\begin{aligned} & 0.15 \mathrm{~mA}, 100 \mathrm{VAC} \\ & 0.35 \mathrm{~mA}, 240 \mathrm{VAC} \end{aligned}$	$\begin{array}{\|l} \hline 1.2 \mathrm{~mA}, 100 \mathrm{VAC} \\ 2.9 \mathrm{~mA}, 240 \mathrm{VAC} \\ \hline \end{array}$
ON voltage level		min. 80 VAC	min. 80 VAC
OFF voltage level		max. 25 VAC	max. 25 VAC
ON delay	100 VAC	max. 50 ms or 70 ms (selected by input filter setting)	
	240 VAC	max. 100 ms or 120 ms (selected by input filter setting)	
OFF delay	100 VAC	max. 50 ms or 70 ms (selected by input filter setting)	
	240 VAC	max. 100 ms or 120 ms (selected by input filter setting)	
Isolation		-	Opto coupler between input terminals and internal signal transfer

Units with DC Inputs

Power supply	$24 \mathrm{VDC},+10 \% . .-15 \%$
Input impedance	Basic unit VDC input: $4.8 \mathrm{k} \Omega$ Basic unit when using analog signals: $5.0 \mathrm{k} \Omega$ Expansion unit: $4.7 \mathrm{k} \Omega$
Input current	5 mA, typical
ON voltage level	min. 16.0 VDC
OFF voltage level	max. 5.0 VDC
ON delay	5 or 50 ms (selected by input filter setting)
OFF delay	max. 15 or 50 ms (selected by input filter setting)

DC inputs used as analog inputs

Input range	$0 . .10 \mathrm{~V}$
Input impedance	$150 \mathrm{k} \Omega$
Resolution	$0.1 \mathrm{~V}, 1 / 100$ of scale range
Accuracy (at $-25^{\circ} .+55^{\circ} \mathrm{C}$)	10% of full-scale value
A/D converter display	$0 . .10 .5 \mathrm{~V}$

Units with relay outputs

Max. switching capacitance	8 A 240 VAC and 5 A 24 VDC resistive load
Min. switching capacitance	$10 \mathrm{~mA}, 5 \mathrm{VDC}$
Max. life	electrical: $\quad 50,000$ operations mechanical: 10,000,000 operations
ON delay	max. 15 ms
OFF delay	max. 5 ms

Units with Transistor Outputs
Output Circuit Wiring

Transistor Output Type

Item	Specifications		Circuit drawing
Maximum switching capacity	$24 \mathrm{VDC}+10 \%$, -15\%, 500 mA	Each Circuit is composed of an independent common circuit	
Leakage current	0.1 mA max.		
Residual voltage	1.5 V max.		
ON response time	1 ms max.		
OFF response time	1 ms max.		

General Data

Dimensions (mm)

Bit Functions

	Symbol	Bit Address	Number	Function
Basic inputs	I	I0..I5	6	Transfer the external input signals present at the basic units.
Expansion inputs	X	X0.. Xb	12	Transfer the external input signals present at the expansion units.
Basic outputs	Q	Q0..Q3	4	Transfer the logical circuit states to the output terminals of the basic unit.
Expansion outputs	Y	Y1..YB	12	Transfer the logical circuit states to the output terminals of the expansion unit.
Flags	M	M0..Mf	16	For internal program-logic bit processing only.
Holding flags	H	$\mathrm{HO} 0 . \mathrm{Hf}$	16	For internal program-logic bit processing only, but the status (on/off) is stored in the event of a power supply failure
timers	T	T0..T7	8	X: pickup delay Functions selected in the dis- play that allows parameter set- O: release delay ong F: clock generator
Holding timers	\#	\#0..\#3	4	Holds the last intermediate time before the power supply failure or the release of the start signal. The time continues to run towards the setpoint when the power supply or start signal returns.
Counters	C	C0..C7	8	Up/down counter
Weekly timer	@	@0..@7	8	Switches on certain days and at certain times.
Calendar	*	*0..*7	8	Switches independently of the date.
Display function	D	D0..D7	8	Displays any desired character strings with time and counter actual values or AD-converted data.
Analog comparator	A	A0..A4	4	The analog value is evaluated with these bits in the comparator (ZEN-10C_DR-D only).
Timer/counter comparator	P	P0..P1	16	Compares the actual values of timers (T), holding timers (\#) and counters (C) with each other or with a constant.
Command keys	B	B0..B7	8	In RUN mode the integral command keys generate an "ON" signal in the program (DE LUXE type only).

Description of Functions

[: normal

S: set
11

Q1

R: reset

A: alternative

Q2

10

Q0 switches to ON or OFF depending on the status of IO .

Q1 is set to ON when I1 switches to ON.
A reset signal is required to switch Q1 off.

Q1 is set to OFF when I2 switches to ON.

Q2 changes its status at the leading edge of the 13 signal (ON).

Use of the timer and holding timer

Holding timer
(\#0..\#3)

Timers
(T0..T7)

Timers
(T0..T7)

Timers
(T0..T7)

Timers

(T0..T7)

X:
Pickup delay only
Switches ON when the trigger signal is applied and the setting is reached. If the trigger signal is interrupted the present value is saved, then timing out resumes when the signal returns.
Application:
For time delays (e.g.: mixing and metering operations)

X:

Pickup delay
Switches ON when the trigger signal is applied and the setting is reached. The timer is reset when the trigger signal is interrupted.
Application:
For time delays (e.g.: automatic doors or locks)

Release delay (RV)

Switches ON at the leading edge of the trigger signal and OFF when the setting is reached. Application:
For OFF delays (e.g.: lights, fans)

O:

Passing make contact (EW)
The leading edge of the trigger signal switches the timer bit ON; it switches OFF again when the preset time has timed out whether or not the trigger signal is present.
Application:
For starting and stopping operations (e.g.: motors, lights)

F:

Clock generator, starts on space (TP)
When the trigger signal is applied the timer is switched ON and OFF according to the preset time (mark-to-space ratio 1:1) Application:
For visual or audible signalling
(f. e.: emergencies, faults)

Counter functions

Weekly timer

Calendar

31 Dec.

Example of analog comparator

a)

b)

Timer/counter comparator

a)

b)

The counter's timer bit switches ON (C0) when the counter has reached the setting. Applying the reset signal suppresses counting pulses and the present value is set to "ZERO". The count is saved if the supply fails or is isolated.

Timer bit @ 0 switches ON between 08:15 and 17:30, every week Th to Fr.

Timer bit *0 switches ON between 1 April and 31 August.
a) When input $1 \geq 5.2 \mathrm{~V}$ (14 , converted display)
b) When input $1 \leq$ input 2

Input 1 (14, converted display) Input 2 (I5, converted display)
a) When timer $0(\mathrm{TO}) \geq 12 \mathrm{~min} 20 \mathrm{~s}$
b) When counter 1 (C1) \leq counter 2 (C2)

Display Symbology

Setting of the backlighting	LO: Backlighting stays OFF / automatic display OFF L1: Backlighting switches ON / automatic display OFF L2: Backlight stays OFF / automatic display ON L3: Backlighting switches ON / automatic display ON	
Start position display	X (digit) Y (line)	
Display options	CHR	Character (up to 1
	DAT	Month/day (5 digit
	CLK	Hour/minute (5 dig
	114..115	A/D-converted value
	T0..Tf	Timer actual value
	\#0..\#7	Holding timer actu
	C0..C1	Counter actual val
Monitoring	A: Online data are displayed D: Online data are not displayed	

Bit Assignment of Buttons

Applications

Switching On and Off of lighting and lighting groups
Use of bit logic

10 All lights ON			
00	I1 Pattern 1	SQ0	Grp. 1 lights up
01		SQ1	Grp. 2 lights up
02		SQ2	Grp. 3 lights up
03		SQ3	Grp. 4 lights up
04	12 Pattern 2	SQ0	Grp. 1 lights up
05		RQ1	Grp. 2 does not light up
06		SQ2	Grp. 3 lights up
07		RQ3	Grp. 4 does not light up
08	I3 All lights ON	SQ0	Grp. 1 lights up
09		SQ1	Grp. 2 lights up
10		RQ2	Grp. 3 does not light up
11		RQ3	Grp. 4 does not light up
12		RQ0	Grp. 1 does not light up
13		RQ1	Grp. 2 does not light up
14		RQ2	Grp. 3 does not light up
15		RQ3	Grp. 4 does not light up

Controlling air circulation

 in greenhouses
Use of bit logic and timer functions

Parameter Settings

$11 / 2$ hrs set

Adapts lighting to prevailing lighting conditions; light adaption
saves energy.
Switch 1 (IO) is ON,

- All lights light up

Switch 2 (I1) is ON,

- Lighting groups 1 and 3 are on

Switch 3 (I2) is ON,

- Lighting groups 1 and 2 are on

Switch 4 (I3) is ON,

- All lights go out

ZEN being used to circulate carbon dioxide or warm air. Two fans operate at preset intervals. The starting current for the fans can be reduced by staggered starting. When START is operated, Fan 1 starts first followed 30 seconds later by Fan 2. A repeat cycle of 1 hour air circulation and $11 / 2$ hour pause starts.

Coin-operated car wash

Use of bit logic and timer functions

The running time can be varied according to the number of coins. When the holding timers (\#) are used with the holding flags (H), the residual spray time is not reset if the supply is unexpectedly interrupted.

- The spray function operates for 3 minutes per coir

Parameter Settings

Holding timer \#0

\#0	X	$M: S$	A
TRG			
RES		$03: 00$	

3 min. set

Escalator

Use of bit logic, timer function and weekly timer

Parameter Settings
Weekly timer @0 (Mo-Fr: 07:00-10:00 h)

\#0	MO-FR	
	ON	$07: 00$
RES	OFF	$10: 00$

A

OFF 10:00

Weekly timer @1
(Mo-Fr: 17:00-22:00 h)

\#1	MO-FR	
	ON	$17: 00$
RES	OFF	$22: 00$

OFF delay
Timer TO

An escalator can be operated at certain times and on certain days. To save energy, the escalator can be set in motion by a sensor detecting a passenger. 2 weekly timers can run an escalator on working days between 07:00-10:00 h and 17:00-22:00 h.
Outside these times the escalator is run for three minutes when a passenger is detected.

Other applications

Automatic door and gate opening
For automatic opening and closing at certain times/on certain days.
Illumination for dispensers
Continuous illumination of the dispensers at certain times or according to use.

Monitoring and control of levels in water tanks

ZEN monitors the water level depending on a capacitive measuring system.
Automatic pre-heating of soldering machines
Soldering can commence as soon as the shift starts, so no working time is wasted.

